Detección de Raíces Unitarias y Sensibilidad a Condiciones Iniciales en los Rendimientos del Índice S&P/BMV IPC
Palabras clave:
Estacionariedad, Raíces unitarias, Dickey-Fuller, Exponente de Lyapunov, Bolsa Mexicana de ValoresResumen
DOI: http://doi.org/10.5281/zenodo.10541189
Este estudio se propone abordar la cuestión de si las series temporales de rendimientos de las acciones emitidas por las empresas pertenecientes al sector de Bienes de Consumo Frecuente del índice S&P/BMV IPC presentan raíces unitarias y muestran sensibilidad a condiciones iniciales. Este planteamiento se fundamenta en el reconocimiento de la importancia de la presencia de raíces unitarias y sensibilidad inicial en las series temporales financieras. Su impacto puede generar sesgos significativos en análisis, proyecciones, toma de decisiones y gestión de riesgos en las inversiones del sector bursátil, afectando así a diversos sectores económicos del país. La relevancia de abordar esta problemática radica en la necesidad de comprender cómo la presencia de raíces unitarias puede afectar la dinámica del mercado, y cómo la sensibilidad a condiciones iniciales puede desempeñar un papel determinante en este contexto. Para abordar esta investigación, se examinarán las seis emisoras que conforman el sector de Bienes de Consumo Frecuente a través de la aplicación de la prueba de Dickey-Fuller y el cálculo del exponente de Lyapunov. Estas herramientas analíticas permitieron evaluar la existencia de raíces unitarias y la sensibilidad inicial en las series temporales de rendimientos de las acciones. El análisis concluye que las series de rendimientos logarítmicos no necesitan ser diferenciadas, dado que exhiben estacionariedad y ausencia de raíces unitarias. Al emplear el exponente de Lyapunov, se obtienen exponentes negativos para el 100% de las emisoras, indicando así que poseen cierta estabilidad y no tienden a comportarse de manera caótica.
Descargas
Citas
Alexander, S. (1961). Price Movements in Speculative Markets: Trends or Random Walks. Industrial Management Review, (2), 7-26. http://tinyurl.com/yps3vkt5
Bazán, W. (2020). Fundamentos para pronosticar una serie de tiempo estacionaria con información de su propio pasado. Revista Industrial Data, 23(1), 207-228. https://doi.org/mb4f
Bollerslev, T. (1986, April). Generalized autoregressive conditional heteroscedasticity. Journal of Econometrics, 31(3), 307-327. https://doi.org/bdw3mq
Calzada, F. (2015, diciembre). El exponente de Hurst y su utilización en los mercados financieros. Una aplicación al tipo de cambio en México (Tesis de Maestría). Universidad Nacional Autónoma de México. https://t.ly/UKjW_
Chambi, P. (2017). La volatilidad de los mercados financieros globalizados: Impacto en la bolsa de valores de Lima – Perú. QUIPUKAMAYOC, 25(47), 103-111. https://doi.org/mb4h
Costa, E., & Rocha, F. (2021). Sistemática para Análise de Séries de Tráfego de Rede Sob o Espectro da Teoria do Caos. XXXIX Simposio Brasileño de Telecomunicaciones y Procesamiento de Señales. 26–29 de septiembre de 2021. Fortaleza. https://doi.org/mb4j
Cowles, A., & Jones, H. (1937, July). Some A Posteriori Probabilities in Stock Market Action. Econometrica, 5(3), 280-294. http://tinyurl.com/yckhfa7s
Enamul, M., & Dionísio, A. (2021). Market Efficiency Dynamics and Chaotic Behavior of Dhaka Stock Exchange: Evidence from Mutual Information and Lyapunov Exponents Models. Universal Journal of Accounting and Finance, 9(4), 796-809. http://tinyurl.com/29rfch25
Engle, R. (1982, July). Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica, 50(4), 987-1007. http://tinyurl.com/2eak8567
Fama, E. F. (1970). Efficient Capital Markets: A Review of Theory and Empirical Work. The Journal of Finance, 25(2), 383–417. https://doi.org/b3kfdr
Fernández, M. (2016). Dinámica No Lineal, Teoría del Caos y Sistemas Complejos: una perspectiva histórica. Real Academia de Ciencias Exactas, Físicas y Naturales, 109(1/2), 107-126. http://tinyurl.com/mr2fdh9n
Gálvez, E. (2005). Análisis Fractal del Mercado de Valores de México (1978-2004) (Tesis de doctorado). Instituto Politécnico Nacional. http://tinyurl.com/5n76evsv
Gencay, R., & Dechert, W. (1992), An algorithm for the n Lyapunov Exponents of an n dimensional unkown dynamical system. Physica D, 59, 142-157. https://t.ly/f4gDS
Jalil, A., & Rao, N. (2019). Environmental Kuznets Curve (EKC). A Manual. In Time Series Analysis (Stationarity, Cointegration, and Causality) (pp. 85-99). Academic Press. https://doi.org/mb4k
Kyaw, N., Los, C., & Zong, S. (2004, November 8). Persistence Characteristics of Latin American Financial Markets. Economics Working Paper. https://doi.org/b6ng2n
Lipka, M., & Los, A. (2003, July). Long-Term Dependence Characteristics of European Stock Indices [Monography]. Kent State University. https://doi.org/fjfrx5
Lorenz, N. (1963, March). Deterministic Nonperiodic Flow. Journal of Atmospheric Sciences, 20(2), 130-141. http://tinyurl.com/3kuj3fts
Mandelbrot, B. (1961, October). Stable Paretian random functions and the multiplicative variation of income. Econometrica, 29(4), 517-543. https://doi.org/b5hqkk
Mandelbrot, B., & Hudson, R. (2006). Fractales y finanzas. Una aproximación matemática a los mercados: arriesgar, perder y ganar. Tusquets.
Meneses, L., & Pérez, C. (2020, julio/diciembre). Análisis comparativo de eficiencia en mercados emergentes. El caso de Colombia, Chile y Perú. Apuntes Contables, (26), 9-24). https://doi.org/mb4n
Nguyen, T. (2018, March 2). Lyapunov Stability Theory. Teoría de la estabilidad de Lyapunov. In Model-Reference Adaptive Control. Advanced Textbooks in Control and Signal Processing (pp. 47-81). Springer. https://doi.org/mb4p
Olmedo, E., Gimeno, R., Escot, L., & Mateos, R. (2007, mayo). Convergencia y estabilidad de los tipos de cambio europeos: una aplicación de exponentes de Lyapunov. Cuadernos de Economía, 44, 91-108. http://tinyurl.com/23be8e9v
Parisi, F., Espinosa, C., & Parisi, A. (2007, octubre/diciembre). Pruebas de comportamiento caótico en índices bursátiles americanos. El trimestre económico, 74(4), 907-927. http://tinyurl.com/4xmdu6c8
Peters, E. (1994). Fractal market analysis. Wiley Finance Editions. https://t.ly/wERSH
Ping, Z., Xikui, H., Zhigang, Z., & Jun, M. (2021, September). What is the most suitable Lyapunov function? Chaos, Solitons and Fractals, 150, 111154. https://doi.org/grw7jv
Quinde, V., Bucaram, R., Saldaña, M., & Ordeñana, A. (2020). Relación entre el crecimiento y el desarrollo económico: caso Ecuador. Universidad y Sociedad, 11(4), 391-397. http://tinyurl.com/yc5d2k6a
Ruiz-Porras, A., & Ruiz-Robles, B. (2015, January/February). La hipótesis de eficiencia y la modelación de series bursátiles mexicanas: un análisis multivariado. Economía Informa, 390, 28-57. https://doi.org/f26hz2
Sandubete, J., & Escot, L. (2021, June). DChaos: An R package for chaotic time series analysis. The R Journal, 13(1), 232-252. http://tinyurl.com/5886rm6r
Sierra, K., Duarte, J., & Mascareñas, J. (2013). Comprobación del comportamiento caótico en bolsa de valores de Colombia. Estrategia organizacional, 2, 41-53. https://doi.org/gn9nps
Stock, J., & Watson, M. (2012). Introducción a la Econometría (3ª ed.). Pearson. http://tinyurl.com/5dw9vbs2
Takens, F. (1981). Detecting strange attractors in turbulence. In D. Rand, & L. S. Young (Eds.). Lecture Notes in Mathematics (pp. 366-381). http://tinyurl.com/4a42d3wa
Tsionas, M., & Panayotis M. (2017, September 15). Neglected chaos in international stock markets: Bayesian analysis of the joint return–volatility dynamical system. Physica A: Statistical Mechanics and its Applications, 482, 95-107. https://doi.org/gbpvpb
Velásquez, H., & Restrepo, J. H. (2012). Análisis del índice general de la bolsa de valores de Colombia y sus rendimientos desde la teoría del caos, 2001-2011. Semestre económico, 15(31), 79-98. https://doi.org/mb4q
Wei, U. (2021). Lyapunov Stability theory for Nonlinear Nabla Fractional Order Systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 68(10), 3246-3250. http://tinyurl.com/4n37r52j
Wolf, A., Swift, J., Swinney, H., & Vastano, J. (1985, July). Determining Lyapunov exponents from a time series. Physica D: Nonlinear Phenomena, 16(3), 285-317. https://doi.org/c4swqs
Wooldridge, J. (2009). Introducción a la econometría un enfoque moderno (4ª ed.). Cengage Learning. https://t.ly/Xr5R-
Publicado
Versiones
- 2023-12-15 (2)
- 2023-12-15 (1)
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 2023
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Los autores de las contribuciones que sean seleccionadas para su publicación en el libro Un Espacio para la Ciencia, conservan sus derechos de autor, sin embargo a través de la publicación, permiten la difusión del contenido de los trabajos que envían a la editorial bajo la licencia Creative Commons 4.0.